
Oracle Forensics Part 5:

Finding Evidence of Data Theft

in the

Absence of Auditing

David Litchfield [davidl@ngssoftware.com]
10th August 2007

An NGSSoftware Insight Security Research (NISR) Publication
©2007 Next Generation Security Software Ltd

http://www.ngssoftware.com

Introduction

The forensic analysis of a compromised database server presents its own unique
challenges. In other areas of computer forensics it's often obvious that a crime has been
committed: pornographic images are discovered on a hard drive; a rootkit has been
installed; a system has been trashed. In the case of a database intrusion however it may
appear at first glance that nothing untoward has happened - prima facie evidence appears
absent. In the physical world if something is stolen it is gone and by that the theft
becomes obvious but with computers, and specifically database servers, when data is
stolen, only a copy is taken and the original remains. As such, it is not immediately
apparent that a theft has occurred and, in the absence of a suitable audit trail, it becomes
even harder for the investigator to determine whether a breach has occurred. According to
the National Conference of State Legislatures [1] 35 states in the U.S. have enacted
security breach notification laws such as the California Database Security Breach
Notification Act, Senate Bill 1386. Many of these laws only require notification in the
event of an attacker gaining access to personally identifiable information (PII) and some
require organizations to only notify in the case of an attacker gaining access to
unencrypted PII. Knowing whether an attacker has gained access or not is critical when it
comes to making the decision as to notify or not. This paper will show how an incident
responder may determine if a such a breach of an Oracle database server has occurred in
the event that there is no audit trail but it is suspected that an attacker has gain
unauthorized SELECT access to data.

If an attacker breaks into a database and creates objects such as functions or tables and
even deletes them afterwards in an attempt to hide their activities then they can be easily
spotted [2]. If an attacker however breaks in and simply silently SELECTs some data, for
example usernames, passwords or credit card details, and then slinks away then they can
be much more difficult to spot. In a system that doesn't have auditing enabled how can
one tell if such an attack has taken place? Pinning down evidence of this kind of
compromise can be difficult but, as this paper will show, there are a few places where
evidence of SELECT queries can be found. These include tables used by the Automatic
Workload Repository (AWR), the Cost-Based Optimizer (CBO) and fixed views in the
shared pool area of memory. In the case of SQL injection attacks through a web server
there may of course be evidence in the web server’s log files – this paper however
concentrates on evidence in the database server itself.

N.B. This paper details information about Oracle 10g Release 2 only and should be used
as a guideline for investigating other versions of Oracle as no guarantees or assertions can
be made about other versions. For more papers on Oracle Forensics please see
http://www.databasesecurity.com/oracle-forensics.htm

The Cost-Based Optimizer

Whenever a user executes an SQL query, the server needs to compile the query into an
execution plan. The best way to do this is determined by the Cost-Based Optimizer
(CBO) which attempts to reduce the amount of system resources required to service the

query. Statistics about the CBO are recorded in tables by the System Monitor (SMON)
background process. One such table, the COL_USAGE$ table, is used to record
information about predicates used in SELECT queries or, in other words, the columns
used in a WHERE clause and the type of predicate such as equals, like, range and so on.
In 10g Release 2, this table is updated by the SMON process every twenty minutes.
Information in this table can be used by a forensic examiner or incident responder to infer
details about SELECT queries that have been executed in the database which can indicate
whether data may have been stolen or not. Before showing how, let’s look at the table’s
definition.

SQL> DESC COL_USAGE$
 Name Null? Type
 --- -------- ---------------
 OBJ# NUMBER
 INTCOL# NUMBER
 EQUALITY_PREDS NUMBER
 EQUIJOIN_PREDS NUMBER
 NONEQUIJOIN_PREDS NUMBER
 RANGE_PREDS NUMBER
 LIKE_PREDS NUMBER
 NULL_PREDS NUMBER
 TIMESTAMP DATE

The OBJ# column holds the object ID of the table being queried and the INTCOL#
column holds the column number, as taken from the COL# column in the COL$ table,
used with the predicate. So, for example, if Z is defined as the 3rd column in COL$ on the

COLTEST table and a query of ‘SELECT * FROM COLTEST WHERE Z = 0’ is

executed then the INTCOL# column in COL_USAGE$ will be 3. The TIMESTAMP
column records to the nearest second when the entry was added to the COL_USAGE$
table – not when the query being recorded was executed. This is important to note when
building a time line of events. As the SMON process writes changes to the
COL_USAGE$ table every 20 minutes there can be a maximum skew of 20 minutes for a
given entry. Another point to note with the TIMESTAMP column is that, if a new query
on the same table using the same predicate is executed, the TIMESTAMP is updated;
thus older records will be overwritten. The remaining columns indicate the type of
predicate. For example, a row entry for EQUALITY_PREDS would be generated after a

query of ‘SELECT X FROM COLTEST WHERE Z = 5’. A RANGE_PREDS row

would be generated after a query of ‘SELECT X FROM COLTEST WHERE Z > 0

AND Z < 100’. A NULL_PREDS row would be generated after a query of ‘SELECT

Y FROM COLTEST WHERE Y IS NULL’ and a LIKE_PREDS row generated after a

query of ‘SELECT Y FROM COLTEST WHERE Y LIKE ‘%A%’’.

By dumping the contents of this table, a full picture of which tables have been selected
from and which columns have been used with which predicates can be gained. So as to
format the results more clearly each predicate type can be queried separately. For
example, dumping the LIKE_PREDs can be done as follows:

SQL> ALTER SESSION SET NLS_DATE_FORMAT = 'YYYY-MM-DD HH24:MI:SS';

Session altered.

SQL> SELECT C.TIMESTAMP, O.NAME, C.INTCOL#, C.LIKE_PREDS FROM
COL_USAGE$ C, OBJ$ O WHERE C.OBJ#=O.OBJ# AND C.LIKE_PREDS > 0;

TIMESTAMP NAME INTCOL# LIKE_PREDS
------------------- -------------- ------- ----------
2007-08-08 06:10:27 COL$ 6 1
2007-08-09 18:06:55 OBJ$ 4 2
…
…

If we look at the first row of data we can see that someone has SELECTed from the
COL$ table using the 6th column with a “like” predicate. As it happens, this row was
created in COL_USAGE$ after an attacker, whilst looking for interesting tables from
which to dump data, executed the following SQL:

SQL> SELECT TABLE_NAME FROM DBA_TAB_COLS WHERE COLUMN_NAME LIKE
'%CREDITCARD%';

DBA_TAB_COLS is a view that maps onto the COL$ table – COLUMN_NAME in the
view corresponds to the 6th column in the COL$ table – which is “NAME” – in other
words the name of the column. One thing to note here is that the OBJ# in COL_USAGE$
relates not to the view’s object ID but that of the underlying table.

Clearly for this method to be useful one needs to be able acquire a baseline with which
current data can be compared against. This baseline can be established in a number of
ways. If the COL_USAGE$ table happens to have been backed up then comparisons with
can be made these, provided of course the backups were made during a time outside of
the intrusion. If no backups of COL_USAGE$ are available then it may be possible
through examinations of the organization’s database applications and conversations with
DBAs and developers to determine which tables should appear in the COL_USAGE$
table and under what conditions. For example, if the organization’s applications only ever
query tables 1, 2 and 3 but not 4 and 4 happens to appear in the COL_USAGE$ data then
one may infer that this is outside the bounds of what is “normal”, warranting further
investigation. There are further limitations when it comes to inferring details of attacks
using COL_USAGE$ data. It is evident that if an attacker does not predicate their query
with a column from the table in question then no entry will be created in the

COL_USAGE$ table. Thus if an attacker queries ‘SELECT PASSWORD FROM SYS.USER$

WHERE NAME = ‘SYS’‘ then a row will be created however no row will be created for the

following query, ‘SELECT PASSWORD FROM SYS.USER$‘.

If an attacker can run arbitrary SQL with DBA privileges, for example by exploiting a
PL/SQL injection flaw, then the attacker could DELETE from this table. In doing so,
however, evidence of this DELETE would be left in the redo logs as well as the data files
themselves [2].

Fixed V$ views in the Shared Pool

There are a number of virtual tables and views that Oracle maintains for performance
purposes. These views are accessible to DBAs and can often contain evidence of attacks.
Two of these views are of particular interest – V$SQL and V$DB_OBJECT_CACHE.

The V$SQL fixed view contains a list of recently executed SQL. It is a circular buffer so
as it fills up new information pushes out old information. Depending upon the size of the
shared pool, and depending upon the length of each query the buffer can hold a large
number of queries. A default install of 10g Release 2 can hold up to about 7000 queries
before older entries are overwritten.

SQL> SET LONG 3000000
SQL> SELECT LAST_ACTIVE_TIME, PARSING_USER_ID, SQL_FULLTEXT FROM V$SQL;

Evidence of an attacker’s activities may be found in this fixed view and careful
examination of the SQL_TEXT should reveal this. It must be stressed that if an attacker
can find a way to execute arbitrary SQL as DBA, of which there are many, then they can
clear the SQL from this view by executing ‘ALTER SYSTEM FLUSH
SHARED_POOL’.

V$DB_OBJECT_CACHE contains details about objects in the library cache. There are
two points of interest with regards to this particular view. Firstly, if an object exists in the
cache then it has probably been accessed recently and secondly this view can contain
snippets of recently executed SQL.

SQL> DESC V$DB_OBJECT_CACHE
 Name Null? Type
 ---------------------------------- -------- ----------------
 OWNER VARCHAR2(64)
 NAME VARCHAR2(1000)
 DB_LINK VARCHAR2(64)
 NAMESPACE VARCHAR2(28)
 TYPE VARCHAR2(28)
 SHARABLE_MEM NUMBER
 LOADS NUMBER
 EXECUTIONS NUMBER
 LOCKS NUMBER
 PINS NUMBER
 KEPT VARCHAR2(3)
 CHILD_LATCH NUMBER
 INVALIDATIONS NUMBER

The type of row data stored in the NAME column depends on the NAMESPACE
column. If a row’s NAMESPACE column is ‘CURSOR’ then NAME holds SQL data –
if NAMESPACE is ‘TABLE/PROCEDURE’ then NAME holds a recently accessed table
or procedure. Thus, to dump a list of recently executed queries one can execute

SQL> SELECT NAME FROM V$DB_OBJECT_CACHE WHERE NAMESPACE = 'CURSOR';

To access a list of recently accessed tables and procedures one can execute

SQL> SELECT OWNER, NAME FROM V$DB_OBJECT_CACHE WHERE NAMESPACE =

'TABLE/PROCEDURE' ORDER BY 1;

By examining this data an incident responder can determine if it contains evidence of an
attack. This fixed view offers certain advantages over the V$SQL view. As already
indicated, an attacker can clear the V$SQL view by executing ‘ALTER SYSTEM
FLUSH SHARED_POOL’. This is not true of data in the V$DB_OBJECT_CACHE view
however – it is not cleared.

Automatic Workload Repository

The Automatic Workload Repository (AWR) is used to collect statistics related to
performance. Records detailing information about SQL queries and object access are kept
by the AWR and this can reveal what actions an attacker may have taken. AWR provides
certain benefits over the V$ views as AWR data is persistent where as V$ data is lost
when the database is shutdown and restarted but one of the drawbacks of using AWR
data is that AWR needs to take a snapshot, which it does every second, at the same time
that the attack is taking place. Assuming of course that the some of the attacker’s actions
have been captured by AWR then they can be found executing the following query:

SQL> SELECT ST.PARSING_SCHEMA_ID, TX.SQL_TEXT FROM WRH$_SQLSTAT ST,
WRH$_SQLTEXT TX WHERE TX.SQL_ID = ST.SQL_ID;

On locating “interesting” queries a timestamp can be collected by referencing the
SQL_ID:

SQL> SELECT TIMESTAMP FROM WRH$_SQL_PLAN WHERE SQL_ID = ‘b7v16a01s0f86’

It must be noted that on occasions some rows in the WRH$_SQLTEXT have no
corresponding SQL_ID in the WRH$_SQLSTAT table. For example, on one of the test
machines used in the lab for this document the following query produces 6 rows:

SQL> SELECT SQL_TEXT FROM WRH$_SQLTEXT WHERE SQL_ID NOT IN (SELECT
DISTINCT SQL_ID FROM WRH$_SQLSTAT);

Wrapping Up

This paper has shown where evidence of instances of data theft may be found in Oracle
10g Release 2 – specifically the tables maintained for performances purposes covering
the Cost Based Optimizer, the dynamic performance V$ fixed views and the Automatic
Workload Repository. In the absence of an audit trail these tables can help indicate
whether an attack has occurred. In the opinion of the author it must be stressed that
absence of evidence in these tables does not constitute proof that an attack did not take
place – it can be seen that an attacker with the appropriate access can take steps to cover
their tracks, even though in doing so they may leave evidence elsewhere.

[1] http://www.ncsl.org/programs/lis/cip/priv/breachlaws.htm
[2] http://www.databasesecurity.com/dbsec/Locating-Dropped-Objects.pdf

